常见基本初等函数求导公式#
1. 常数函数#
- 若 $$f(x) = C$$ (C为常数)
- 则 $$f’(x) = 0$$
2. 幂函数#
- 若 $$f(x) = x^n$$ (n为实数)
- 则 $$f’(x) = nx^{n-1}$$
3. 指数函数#
- 若 $$f(x) = a^x$$ (a > 0, a ≠ 1)
- 则 $$f’(x) = a^x\ln a$$
- 特别地,当 $$f(x) = e^x$$ 时
- 则 $$f’(x) = e^x$$
4. 对数函数#
- 若 $$f(x) = \log_a x$$ (a > 0, a ≠ 1)
- 则 $$f’(x) = \frac{1}{x\ln a}$$
- 特别地,当 $$f(x) = \ln x$$ 时
- 则 $$f’(x) = \frac{1}{x}$$
5. 三角函数#
- $$(\sin x)’ = \cos x$$
- $$(\cos x)’ = -\sin x$$
- $$(\tan x)’ = \sec^2 x$$
- $$(\cot x)’ = -\csc^2 x$$
- $$(\sec x)’ = \sec x\tan x$$
- $$(\csc x)’ = -\csc x\cot x$$
6. 反三角函数#
- $$(\arcsin x)’ = \frac{1}{\sqrt{1-x^2}}$$
- $$(\arccos x)’ = -\frac{1}{\sqrt{1-x^2}}$$
- $$(\arctan x)’ = \frac{1}{1+x^2}$$
- $$(\text{arccot}\ x)’ = -\frac{1}{1+x^2}$$